
1

NEW EDITION

DATABASE MANAGEMENT LAB

PRACTICAL
(Semester -IV of B.Tech)

As per the curricullam and syllabus

of

 Bharath Institute of Higher Education & Research

(DBMS Lab Manual)

PREPARED BY

DR. M.K.VIDHYALAKSHMI

2

 SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

3

LAB MANUAL

SUBJECT NAME: DATABASE MANAGEMENT SYSTEMS LAB

SUBJECT CODE: BCS4L1

Regulation R2015

(2015-2016)

4

BCS4L1 DBMS LABORATORY L T P C

Total Contact Hours - 30 0 0 3 2

Prerequisite –Database Management System

Lab Manual Designed by – Dept. of Computer Science and Engineering

OBJECTIVES: The main objective isstudents gain knowledge about databases for storing the data
and to share the data among different kinds of users for their business operations.

COURSE OUTCOMES (COs)

CO1 Develop database modeling for a problem.

CO2 Design a database using normalization.

CO3 Implement a data base query language.

CO4 Develop GUI using front end tool.

CO5 Develop a connection between frontend and database.

CO6 Implement a Data Manipulation Language.

MAPPING BETWEEN COURSE OUTCOMES & PROGRAM OUTCOMES

(3/2/1 INDICATES STRENGTH OF CORRELATION) 3- High, 2- Medium, 1-Low

COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 S S 2 3

CO2 2 2 3 1 2 2 1 S 2 3

CO3 S S 2 2 2 2 3

CO4 2 2 3

CO5 S 2 2 2 2 3

CO6 2 S 1 2 2 2 2 3

Category Professional Core (PC)

Approval 37th Meeting of Academic Council, May 2015

LIST OF EXPERIMENTS
1. Data Definition, Manipulation of base tables and views

2. High level programming language extensions.

3. Front end tools.

4. Forms-Triggers-Menu Design.

5. Reports.

6. Database Design and implementation

An exercise using Open Source Software like MySQL

5

DATABASE MANAGEMENT SYSTEMS (DBMS) LAB - [BCS4L1]

LIST OF EXPERIMENTS

 NAME OF THE EXPERIMENT

1
Data definition languages (ddl), Data manipulation language (dml) commands of base

tables and views

2 High level programming language extensions

3 Front end tools

4 Forms-triggers-menu design.

5 Reports

6 Design and implementation of employee

7 An exercise using Open-Source Software like MySQL

6

CONTENT

S.NO NAME OF THE EXPERIMENT PAGE NO

1a Data definition languages (ddl) commands of base tables and views 6

1b Data manipulation language (dml) of base tables and views 13

2 High level programming language extensions 50

3 Front end tools 62

4 Forms- triggers- menu design. 67

5 Reports 71

6 Design and implementation of employee 77

7 An exercise using Open-Source Software like MySQL 86

7

EX.NO:1a

DATA DEFINITION LANGUAGES (DDL) COMMANDS Of Base Tables and Views

A Data Definition Language (DDL) statement is used to define the database

structure or schema.

Aim:

To study and execute the DDL commands in RDBMS.

DDL commands:

✴ CREATE

✴ ALTER

✴ DROP

✴ RENAME

✴ TRUNCATE

 SYNTAX’S OF COMMANDS

CREATE TABLE:

To make a new database, table, index, or stored query. A create statement in SQL

creates an object inside of a relational database management system (RDBMS).

CREATE TABLE <table_name>

(

Column_name1 data_type ([size]),

Column_name2 data_type ([size]),

.

.

.

Column_name-n data_type ([size])

);

8

ALTER A TABLE:

To modify an existing database object. Alter the structure of the database.

To add a column in a table

ALTER TABLE table_name ADD column_name datatype;

To delete a column in a table

ALTER TABLE table_name DROP column column_name;

DROP TABLE:

Delete Objects from the Database

DROP TABLE table_name;

TRUNCATE TABLE:

Remove all records from a table, including all spaces allocated for the records are

removed.

TRUNCATE TABLE table_name;

EXERCISE:

Create Table

SQL> create table employee

2 (

3 empid varchar(10) primary key,

4 empname varchar2(20) not null,

5 gender varchar2(7) not null,

6 age number(3) not null,

7 dept varchar2(15) not null,

8 dob date not null,

9 doj date not null

10);

Table created.

9

SQL> create table salary

2 (

3 empid varchar(10) references employee(empid),

4 salary number(10) not null,

5 dept varchar(15) not null,

6 branch varchar2(20) not null

7);

Table created.

SQL> create table branchtable

2 (

3 branch varchar2(20) not null,

4 city varchar2(20) not null

5);

Table created.

DESCRIBE TABLE

SQL> desc employee;

Name Null? Type

EMPID NOT NULL VARCHAR2(10)

EMPNAME NOT NULL VARCHAR2(20)

GENDER NOT NULL VARCHAR2(7)

AGE NOT NULL NUMBER(3)

DEPT NOT NULL VARCHAR2(15)

DOB NOT NULL DATE

DOJ NOT NULL DATE

10

SQL> desc salary;

Name

Null?

Type

EMPID

SALARY

NOT NULL

VARCHAR2 (10)

NUMBER (10)

DEPT NOT NULL VARCHAR2 (15)

BRANCH NOT NULL VARCHAR2 (20)

SQL> desc branchtable;

Name

Null?

Type

BRANCH

NOT NULL

VARCHAR2 (20)

CITY NOT NULL VARCHAR2 (20)

ALTER TABLE

I. ADD:

SQL> alter table employee add(designation varchar2(15));

Table altered.

SQL> alter table salary add(constraint nithi unique(empid));

Table altered.

II. MODIFY

SQL> alter table employee modify (designation varchar2(20));

Table altered.

11

RENAME TABLE

SQL> create table emp

2 (

3 empid varchar2(10),

4 empname varchar2(20),

5 age number(3),

6 sex char

7);

Table created.

SQL> rename emp to empl;

Table renamed.

SQL> desc empl;

Name

Null?

Type

EMPID

EMPNAME

AGE

SEX

VARCHAR2(10)

VARCHAR2(20)

NUMBER(3)

CHAR(1)

SQL> desc emp;

ERROR:

ORA-04043: object emp does not exist

Table altered.

TRUNCATE TABLE DATA

SQL> insert into emp values(&no,'&name','&dept',&age,'&sex');

Enter value for no: 1

Enter value for name: arun

12

Enter value for dept: it

Enter value for age: 22

Enter value for sex: m

old 1: insert into emp values(&no,'&name','&dept',&age,'&sex')

new 1: insert into emp values(1,'arun','it',22,'m')

1 row created.

SQL> insert into emp values(&no,'&name','&dept',&age,'&sex');

Enter value for no: 2

Enter value for name: bala

Enter value for dept: service

Enter value for age: 26

Enter value for sex: m

old 1: insert into emp values(&no,'&name','&dept',&age,'&sex')

new 1: insert into emp values(2,'bala','service',26,'m')

1 row created.

SQL> insert into emp values(&no,'&name','&dept',&age,'&sex');

Enter value for no: 3

Enter value for name: chitra

Enter value for dept: sales

Enter value for age: 25

Enter value for sex: f

old 1: insert into emp values(&no,'&name','&dept',&age,'&sex')

new 1: insert into emp values(3,'chitra','sales',25,'f')

1 row created.

SQL> select * from emp;

EMPID EMPNAME DEPT AGE SEX

1 arun it 22 m

13

2 bala service 26 m

3 chitra sales 25 f

SQL> commit;

Commit complete.

SQL> truncate table emp;

Table truncated.

SQL> select * from emp;

no rows selected

SQL> commit;

Commit complete.

DROP TABLE

SQL> drop table empl;

Table dropped.

SQL> desc empl;

ERROR:

ORA-04043: object empl does not exist

RESULT:

Thus executed the DDL commands in RDBMS

14

EX.NO:1b

 DATA MANIPULATION LANGUAGE (DML) OF BASE TABLES AND VIEWS

Data manipulation language allows the users to query and manipulate data in existing

schema in object. It allows following data to insert, delete, update and recovery data in

schema object.

Aim:

To study DML commands in RDBMS.

DML COMMANDS:

❖ INSERT

❖ UPDATE

❖ DELETE

❖ SELECT

QUERY:

Query is a statement in the DML that request the retrieval of data from database.

❖ The portion of the DML used in a Query is called Query language. The SELECT

statement is used to query a database

SYNTAX OF COMMANDS

INSERT:

Values can be inserted into table using insert commands. There are two types of insert

commands. They are multiple value insert commands (using ‘&’ symbol) single value insert

command (without using ‘&’symbol)

Syntax:

INSERT INTO table_name VALUES (value1, value2, value3,…..);

(OR)

INSERT INTO table_name (column1, column2, column3,….) VALUES

(value1,value2,value3,…..);

15

UPDATE:

This allows the user to update the particular column value using the where clause

condition.

Syntax:

UPDATE <table_name> SET <col1=value> WHERE <column=value>;

DELETE:

This allows you to delete the particular column values using where clause condition.

Syntax:

DELETE FROM <table_name> WHERE <condition>;

SELECT:

The select statement is used to query a database .This statement is used to retrieve the

information from the database. The SELECT statement can be used in many ways. They are:

1. Selecting some columns :

To select specified number of columns from the table the

Following command is used.

Syntax:

SELECT column_name FROM table_name;

2. Query All Columns:

To select all columns from the table * is used instead of column names.

Syntax:

SELECT * FROM table_name;

3. Select using DISTINCT:

The DISTINCT keyword is used to return only different values (i.e.) this

command does not select the duplicate values from the table.

Syntax:

SELECT DISTINCT column name(s) FROM table_name;

16

4. Select using IN:

If you want to get the rows which contain certain values, the best way to do it

is to use the IN conditional expression.

Syntax:

SELECT column name(s) FROM table_name WHERE

Column name IN (value1, value2,……,value-n);

5. Select using BETWEEN:

BETWEEN can be used to get those items that fall within a range.

Syntax:

SELECT column name FROM table_name WHERE

Column name BETWEEN value1 AND value2;

6. Renaming:

The select statement can be used to rename either a column or the entire

table.

Syntax:

Renaming a column:

SELECT column name AS new name FROM table_name;

Renaming a table:

SELECT column name FROM table_name AS newname;

7. Sorting:

The select statement with the order by Clause is used to sort the contents

Table either in ascending or descending order.

Syntax:

SELECT column name FROM table_name WHERE

Condition ORDER BY column name ASC/DESC;

17

8. To select by matching some patterns:

The select statement along with like clause I is used to match strings. The like

condition is used to specify a search pattern in a column.

Syntax:

SELECT column name FROM table_name WHERE Column name LIKE “% or-“;

%: Matches any sub string.

- : Matches a single character.

9. SELECT INTO statement:

The SELECT INTO statement is most often used to create backup copies of

tables or for archiving records.

Syntax:

SELECT Column_name(s) INTO variable_name(s) FROM table_name

WHERE condition.

10. To Select NULL values:

We can use the SELECT statement to select the ‘null’ values also.

For retrieving roes where some of the columns have been defined as NULLs there is a special

comparison operator of the form IS [NOT]NULL.

Syntax:

SELECT column name FROM table_name WHERE Column name IS NULL;

11. Select using AND, OR, NOT:

We can combine one or more conditions in a SELECT statement using the

logical operators AND, OR, NOT.

Syntax:

SELECT column name FROM table_name WHERE Condition1 LOGICAL

OPERATOR condition2;

18

EXERCISE:

INSERT COMMAND

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: it9001

Enter value for empname: arunkumar

Enter value for gender: male

Enter value for age: 22

Enter value for dept: it

Enter value for dob: 12-jan-1988

Enter value for doj: 23-oct-2006

Enter value for desig: manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('it9001','arunkumar','male',22,'it','12-jan-1988','23-oct-

2006'

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: it9001

Enter value for empname: arunkumar

Enter value for gender: male

Enter value for age: 22

Enter value for dept: it

Enter value for dob: 12-jan-1988

Enter value for doj: 23-oct-2006

Enter value for desig: manager

19

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('it9001','arunkumar','male',22,'it','12-jan-1988','23-oct-

2006'

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: it9002

Enter value for empname: balakrishnan

Enter value for gender: male

Enter value for age: 27

Enter value for dept: it

Enter value for dob: 27-mar-1983

Enter value for doj: 02-dec-2008

Enter value for desig: coordinator

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('it9002','balakrishnan','male',27,'it','27-mar-1983','02-

dec-20

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: acc9001

Enter value for empname: kannan

Enter value for gender: male

Enter value for age: 35

Enter value for dept: accounts

Enter value for dob: 28-dec-1975

20

Enter value for doj: 01-jan-1995

Enter value for desig: manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('acc9001','kannan','male',35,'accounts','28-dec-1975','01-

jan-1

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: acc9002

Enter value for empname: magudeshwaran

Enter value for gender: male

Enter value for age: 27

Enter value for dept: accounts

Enter value for dob: 25-aug-1983

Enter value for doj: 12-apr-2000

Enter value for desig: asst manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('acc9002','magudeshwaran','male',27,'accounts','25-aug-

1983','1

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: ser9001

Enter value for empname: jagadheesh

Enter value for gender: male

Enter value for age: 33

21

Enter value for dept: service

Enter value for dob: 31-mar-1877

Enter value for doj: 3-jun-1999

Enter value for desig: manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('ser9001','jagadheesh','male',33,'service','31-mar-

1877','3-jun

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: ser9006

Enter value for empname: muruganandam

Enter value for gender: male

Enter value for age: 35

Enter value for dept: service

Enter value for dob: 09-aug-1975

Enter value for doj: 02-mar-2000

Enter value for desig: painter

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('ser9006','muruganandam','male',35,'service','09-aug-

1975','02-

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

SQL> /

Enter value for empid: sal9001

22

Enter value for empname: suresh

Enter value for gender: male

Enter value for age: 40

Enter value for dept: sales

Enter value for dob: 12-jul-1970

Enter value for doj: 01-apr-1996

Enter value for desig: manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('sal9001','suresh','male',40,'sales','12-jul-1970','01-apr-

1996

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: sal9006

Enter value for empname: sharmila

Enter value for gender: female

Enter value for age: 27

Enter value for dept: sales

Enter value for dob: 12-jan-1983

Enter value for doj: 09-aug-2007

Enter value for desig: executive

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('sal9006','sharmila','female',27,'sales','12-jan-1983','09-

aug-

1 row created.

23

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: it9002

Enter value for salary: 18000

Enter value for dept: it

Enter value for branch: abt maruthi

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('it9002',18000,'it','abt maruthi')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: acc9001

Enter value for salary: 35000

Enter value for dept: accounts

Enter value for branch: cars india

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('acc9001',35000,'accounts','cars india')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: acc9002

Enter value for salary: 26000

Enter value for dept: accounts

Enter value for branch: cars india

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('acc9002',26000,'accounts','cars india')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: ser9001

Enter value for salary: 35000

24

Enter value for dept: service

Enter value for branch: chennai cars

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('ser9001',35000,'service','chennai cars')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: ser9006

Enter value for salary: 12000

Enter value for dept: service

Enter value for branch: greenland cars

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('ser9006',12000,'service','greenland cars')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: sal9001

Enter value for salary: 40000

Enter value for dept: sales

Enter value for branch: abt maruthi

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

new 1: insert into salary values('sal9001',40000,'sales','abt maruthi')

1 row created.

SQL> insert into salary values(‘&empid’,&salary,’&dept’,’&branch’);

Enter value for empid: sal9006

Enter value for salary: 17000

Enter value for dept: sales

Enter value for branch: abt maruthi

old 1: insert into salary values('&empid',&salary,'&dept','&branch')

25

new 1: insert into salary values('sal9006',17000,'sales ','abt maruthi')

1 row created.

SQL> select * from salary;

EMPID SALARY DEPT BRANCH

it9001 35000 it abt maruthi

it9002 18000 it abt maruthi

acc9001 35000 accounts cars india

acc9002 26000 accounts cars india

ser9001 35000 service chennai cars

ser9006 12000 service greenland cars

sal9001 40000 sales abt maruthi

sal9006 17000 sales abt maruthi

8 rows selected.

SQL> select * from employee;

EMPID EMPNAME GENDER AGE DEPT DOB

DOJ DESIGNATION

it9001 arunkumar male 22 it 12-JAN-88

23-OCT-06 manager

it9002 balakrishnan male 27 it 27-MAR-83

02-DEC-08 coordinator

acc9001 kannan male 35 accounts 28-DEC-75

01-JAN-95 manager

EMPID EMPNAME GENDER AGE DEPT DOB

26

DOJ DESIGNATION

acc9002 magudeshwaran male 27 accounts 25-AUG-83

12-APR-00 asst manager

ser9001 jagadheesh male 33 service 31-MAR-77

03-JUN-99 manager

ser9006 muruganandam male 35 service 09-AUG-75

02-MAR-00 painter

EMPID EMPNAME GENDER AGE DEPT DOB

DOJ DESIGNATION

sal9001 suresh male 40 sales 12-JUL-70

01-APR-96 manager

sal9006 sharmila female 27 sales 12-JAN-83

09-AUG-07 executive

8 rows selected.

SQL> insert into branchtable values('&branch','&city');

Enter value for branch: abt maruthi

Enter value for city: chennai

old 1: insert into branchtable values('&branch','&city')

new 1: insert into branchtable values('abt maruthi','chennai')

1 row created.

SQL> select * from salary;

EMPID SALARY DEPT BRANCH

27

it9001 35000 it abt maruthi

it9002 18000 it abt maruthi

acc9001 35000 accounts cars india

acc9002 26000 accounts cars india

ser9001 35000 service chennai cars

ser9006 12000 service greenland cars

sal9001 40000 sales abt maruthi

sal9006 17000 sales abt maruthi

8 rows selected.

SQL> insert into branchtable values('&branch','&city');

Enter value for branch: cars india

Enter value for city: vellore

old 1: insert into branchtable values('&branch','&city')

new 1: insert into branchtable values('cars india','vellore')

1 row created.

SQL> insert into branchtable values('&branch','&city');

Enter value for branch: chennai cars

Enter value for city: thambaram

old 1: insert into branchtable values('&branch','&city')

new 1: insert into branchtable values('chennai cars','thambaram')

1 row created.

SQL> insert into branchtable values('&branch','&city');

Enter value for branch: greenland cars

Enter value for city: kanchipuram

old 1: insert into branchtable values('&branch','&city')

new 1: insert into branchtable values('greenland cars','kanchipuram')

28

1 row created.

SQL> select * from branchtable;

BRANCH CITY

abt maruthi chennai

cars india vellore

chennai cars thambaram

greenland cars kanchipuram

UPDATE COMMAND

SQL> update employee set empname = 'arunprasanth' where empid='it9001';

1 row updated.

SQL> update employee set designation='&designation' where empname='&empname';

Enter value for designation: supervisor

Enter value for empname: muruganandam

old 1: update employee set designation='&designation' where empname='&empname'

new 1: update employee set designation='supervisor' where empname='muruganandam'

1 row updated.

SQL> select empname,designation from employee;

EMPNAME DESIGNATION

arunprasanth manager

balakrishnan coordinator

kannan manager

magudeshwaran asst manager

jagadheesh manager

29

muruganandam supervisor

suresh manager

sharmila executive

8 rows selected.

SELECT COMMAND

To retrieve particular column

SQL> select empname from emp;

EMPNAME

arun

bala

bakyaraj

chitra

To retrieve all columns

SQL> select * from emp;

EMPID EMPNAME DEPT AGE S

1 arun it 22 m

2 bala accounts 26 m

3 bakyaraj stores 30 m

4 chitra sales 24 f

DELETE COMMAND

To delete particular record

SQL> delete emp where empid=1;

1 row deleted.

30

SQL> select * from emp;

EMPID EMPNAME DEPT AGE S

2 bala accounts 26 m

3 bakyaraj stores 30 m

4 chitra sales 24 f

To delete all records

SQL> delete from emp;

3 rows deleted.

SQL> create table student (idno number, name varchar(10),branch varchar(4));

Table created.

SQL> desc student;

NAME NULL? TYPE

IDNO NUMBER

NAME VARCHAR2(10)

BRANCH VARCHAR2(4)

SQL> alter table student add degree varchar(10);

Table altered.

SQL> desc student;

NAME NULL? TYPE

IDNO NUMBER

31

NAME VARCHAR2 (10)

BRANCH VARCHAR2 (4)

DEGREE VARCHAR2 (10)

SQL> alter table student modify degree

varchar(6); Table altered.

SQL> desc student;

NAME NULL? TYPE

IDNO NUMBER

NAME VARCHAR2 (10)

BRANCH VARCHAR2 (4)

DEGREE VARCHAR2 (6)

SQL> insert into student (name, degree, branch, idno) values('ASHOK','BE','CSE',01);

1 row created.

SQL> insert into student values(02,'BHAVANA','CSE','BE');

1 row created.

SQL> insert into student values(&idno, &name, &branch, °ree);

Enter value for idno: 03

Enter value for name: 'CAVIN'

Enter value for branch: 'CSE'

Enter value for degree: 'BE'

old 1: insert into student values(&idno,&name,&branch,°ree)

new 1: insert into student values(03,'CAVIN','CSE','BE')

1 row created.

32

Enter value for idno: 04

Enter value for name: 'DANNY'

Enter value for branch: 'IT'

Enter value for degree: 'BE'

old 1: insert into student values(&idno,&name,&branch,°ree)

new 1: insert into student values(04,'DANNY','IT','BE')

1 row created.

SQL> /

Enter value for idno: 05

Enter value for name: 'HARRY'

Enter value for branch: 'IT'

Enter value for degree: 'BE'

old 1: insert into student values(&idno,&name,&branch,°ree)

new 1: insert into student values(05,'HARRY','IT','BE')

1 row created.

SQL> select * from student;

IDNO NAME BRAN DEGREE

1 ASHOK CSE BE

2 BHAVANA CSE BE

3 CAVIN CSE BE

4 DANNY IT BE

5 HARRY IT BE

SQL> update student set degree='B.TECH' where branch='IT';

2 rows updated.

33

SQL> select * from student;

IDNO NAME BRAN DEGREE

1 ASHOK CSE BE

2 BHAVANA CSE BE

3 CAVIN CSE BE

4 DANNY IT B.TECH

5 HARRY IT B.TECH

SQL> delete from student where idno=5;

1 row deleted.

CREATING TABLES WITH CONSTRAINTS:

NOT NULL

SQL> select * from student;

IDNO NAME BRAN DEGREE

1 ASHOK CSE BE

2 BHAVANA CSE BE

3 CAVIN CSE BE

4 DANNY IT B.TEC
H

SQL> create table staff

(

idno number (4) not null,name

varchar(10),branch varchar(6)

); Table created.

34

SQL> desc staff;

NAME NULL? TYPE

IDNO NOT NULL NUMBER(4)

NAME

VARCHAR2(10)

BRANCH VARCHAR2(6)

SQL> insert into staff values (&idno, &name, &branch);

Enter value for idno: 1

Enter value for name: 'ABILASH'

Enter value for branch: 'CSE'

old 1: insert into staff values(&idno, &name, &branch)

new 1: insert into staff values(1,'ABILASH','CSE')

1 row created.

SQL> /

Enter value for idno: 2

Enter value for name: 'ANTON'

Enter value for branch: 'CSE'

old 1: insert into staff values(&idno, &name, &branch)

new 1: insert into staff values(2,'ANTON','CSE')

1 row created.

SQL> /

Enter value for idno:

Enter value for name: 'BENNY'

Enter value for branch: 'IT'

35

old 1: insert into staff values(&idno,&name,&branch)

new 1: insert into staff values(,'BENNY','IT')

insert into staff values(,'BENNY','IT') *

ERROR at line 1:

ORA-00936: missing expression

UNIQUE

SQL> create table employee

(

rollno number unique,

name varchar(10),

salary number

);

Table created.

SQL> desc employee;

NAME NULL? TYPE

ROLLNO NUMBER

NAME VARCHAR2(10)

SALARY NUMBER

SQL> insert into employee values(&rollno,&name,&salary);

Enter value for rollno: 1

Enter value for name: 'anton'

Enter value for salary: 10290

old 1: insert into employee values(&rollno,&name,&salary)

36

new 1: insert into employee values(1,'anton',10290)

1 row created.

SQL> /

Enter value for rollno: 2

Enter value for name: 'dharun'

Enter value for salary: 23322

old 1: insert into employee values(&rollno,&name,&salary)

new 1: insert into employee values(2,'dharun',23322)

1 row created.

SQL> /

Enter value for rollno: 1

Enter value for name: 'aaron'

Enter value for salary: 32212

old 1: insert into employee values(&rollno,&name,&salary)

new 1: insert into employee values(1,'aaron',32212)

insert into employee values(1,'aaron',32212)

*

ERROR at line 1:

ORA-00001: unique constraint (SCOTT.SYS_C001265) violated

PRIMARY KEY

SQL> create table cars

(model number primary key,

name varchar(10),

cost number(6)

);

Table created.

37

SQL> desc cars;

NAME NULL? TYPE

MODEL NOT NULL NUMBER

NAME VARCHAR2(10)

COST NUMBER(6)

SQL> insert into cars values(&model,&name,&cost);

Enter value for model: 1098

Enter value for name: 'omni'

Enter value for cost: 200000

old 1: insert into cars values(&model,&name,&cost)

new 1: insert into cars values(1098,'omni',200000)

1 row created.

SQL> /

Enter value for model: 9087

Enter value for name: 'qualis'

Enter value for cost: 500000

old 1: insert into cars values(&model,&name,&cost)

new 1: insert into cars values(9087,'qualis',500000)

1 row created.

SQL> /

Enter value for model: 1098

Enter value for name: 'innova'

Enter value for cost: 600000

old 1: insert into cars values(&model,&name,&cost)

38

insert into cars values(1098,'innova',600000)

*

ERROR at line 1:

ORA-00001: unique constraint (SCOTT.SYS_C001266) violated

CHECK CONSTRAINT:

SQL> create table employ

(

rno number(5),

name varchar(10),

salary number(10) constraint no_ck check(salary between 10000 and 30000)

);

Table created.

SQL> desc employ;

NAME NULL? TYPE

RNO NUMBER(5)

NAME VARCHAR2(10)

SALARY NUMBER(10)

SQL> insert into employ values(&rno,&name,&salary);

Enter value for rno: 1

Enter value for name: 'sachin'

Enter value for salary: 29000

old 1: insert into employ values(&rno,&name,&salary)

new 1: insert into employ values(1,'sachin',29000)

39

SQL> /

Enter value for rno: 20

Enter value for name: 'rohit'

Enter value for salary: 10000

old 1: insert into employ values(&rno, &name, &salary)

new 1: insert into employ values(20,'rohit',10000)

1 row created.

SQL> /

Enter value for rno: 15

Enter value for name: 'dhoni'

Enter value for salary: 40000

old 1: insert into employ values(&rno,&name,&salary)

new 1: insert into employ values(15,'dhoni',40000)

insert into employ values(15,'dhoni',40000)

*

ERROR at line 1:

ORA-02290: check constraint (SCOTT.NO_CK) violated

FOREIGN KEY

SQL> create table admin

(

stuid number constraint stuid_pk primary key,

name varchar(10),

permit number(6)

);

Table created.

40

SQL> desc admin;

NAME NULL? TYPE

STUID NOT NULL NUMBER

NAME VARCHAR2(10)

PERMIT NUMBER(6)

SQL> insert into admin values(&stuid, '&name', &permit);

Enter value for stuid: 1

Enter value for name: ASWIN

Enter value for permit: 80

old 1: insert into admin values(&stuid,'&name',&permit)

new 1: insert into admin values(1,'ASWIN',80)

1 row created.

SQL> /

Enter value for stuid: 2

Enter value for name: ROHIT

Enter value for permit: 67

old 1: insert into admin values(&stuid,'&name',&permit)

new 1: insert into admin values(2,'ROHIT',67)

1 row created.

SQL> /

Enter value for stuid: 4

Enter value for name: SANJAY

Enter value for permit: 45

old 1: insert into admin values(&stuid,'&name',&permit)

41

new 1: insert into admin values(4,'SANJAY',45)

1 row created.

SQL> /

Enter value for stuid: 5

Enter value for name: KAMALINI

Enter value for permit: 35

old 1: insert into admin values(&stuid,'&name',&permit)

new 1: insert into admin values(5,'KAMALINI',35)

1 row created.

SQL> select * from admin;

STUID NAME PERMIT

1 ASWIN 80

2 ROHIT 67

4 SANJAY 45

5 KAMALINI 35

SQL> create table course

(

stuid number constraint sid_fk references admin(stuid),

branch varchar(6),

sec varchar(2)

);

Table created.

42

SQL> insert into course values(&stuid,'&branch','&sec');

Enter value for stuid: 1

Enter value for branch: CSE

Enter value for sec: A

old 1: insert into course values(&stuid,'&branch','&sec')

new 1: insert into course values(1,'CSE','A')

1 row created.

SQL> /

Enter value for stuid: 2

Enter value for branch: CSE

Enter value for sec: A

old 1: insert into course values(&stuid,'&branch','&sec')

new 1: insert into course values(2,'CSE','A')

1 row created.

SQL> /

Enter value for stuid: 4

Enter value for branch: IT

Enter value for sec: A

old 1: insert into course values(&stuid,'&branch','&sec')

new 1: insert into course values(4,'IT','A')

1 row created.

SQL> /

Enter value for stuid: 6

Enter value for branch: CSE

43

Enter value for sec: A

old 1: insert into course values(&stuid,'&branch','&sec')

new 1: insert into course values(6,'CSE','A')

insert into course values(6,'CSE','A')

*

ERROR at line 1:

ORA-02291: integrity constraint (SCOTT.SID_FK) violated - parent key not found

SQL> delete from admin where stuid=5;

1 row deleted.

SQL> delete from admin where stuid=1;

delete from admin where stuid=1

*

ERROR at line 1:

ORA-02292: integrity constraint (SCOTT.SID_FK) violated - child record found

SQL> select * from admin;

STUID NAME PERMIT

1 ASWIN 80

2 ROHIT 67

4 SANJAY 45

SQL> select * from course;

STUID BRANCH SE

1 CSE A

2 CSE A

4 IT A

44

SQL> create table student

(

idno varchar(4),

name varchar(10),

dept varchar(4),

degree varchar(6),

year number(4)

);

table created.

SQL> desc student;

NAME NULL? TYPE

IDNO VARCHAR2(4)

NAME VARCHAR2(10)

DEPT VARCHAR2(4)

DEGREE VARCHAR2(6)

YEAR NUMBER(4)

SQL> insert into student values('&idno', '&name', '&dept', '°ree', &year);

Enter value for idno: A01

Enter value for name: AARON

Enter value for dept: CSE

Enter value for degree: BE

Enter value for year: 2

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

45

new 1: insert into student values('a01','aaron','cse','BE',2)

1 row created.

SQL> /

Enter value for idno: A02

Enter value for name: AKIL

Enter value for dept: ECE

Enter value for degree: BE

Enter value for year: 2

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

new 1: insert into student values('A02','AKIL','ECE','BE',2)

1 row created.

SQL> /

Enter value for idno: A03

Enter value for name: BENNY

Enter value for dept: IT

Enter value for degree: B.TECH

Enter value for year: 2

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

new 1: insert into student values('A03','BENNY','IT','B.TECH',2)

1 row created.

SQL> /

Enter value for idno: B01

Enter value for name: COOK

Enter value for dept: CSE

Enter value for degree: BE

46

Enter value for year: 1

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

new 1: insert into student values('B01','COOK','CSE','BE',1)

1 row created.

SQL> /

Enter value for idno: B02

Enter value for name: DANNY

Enter value for dept: MECH

Enter value for degree: BE

Enter value for year: 1

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

new 1: insert into student values('B02','DANNY','MECH','BE',1)

1 row created.

SQL> /

Enter value for idno: B03

Enter value for name: ELAN

Enter value for dept: IT

Enter value for degree: B.TECH

Enter value for year: 1

old 1: insert into student values('&idno','&name','&dept','°ree',&year)

new 1: insert into student values('B03','ELAN','IT','B.TECH',1)

1 row created.

47

SQL> SELECT * FROM STUDENT;

IDNO NAME DEPT DEGREE YEAR

A01

AARON

CSE

BE

2

A02 AKIL ECE BE 2

A03 BENNY IT B.TECH 2

B01 COOK CSE BE 1

B02 DANNY MECH BE 1

B03 ELAN IT B.TECH 1

6 rows selected.

DISTINCT

SQL> select distinct dept from student;

DEPT

CSE

ECE

IT

MECH

SQL> select name from student;

NAME

AARON

AKIL

BENNY

COOK

DANNY

ELAN

6 rows selected.

48

IN

SQL> select * from student where year IN 2;

IDNO NAME DEPT DEGREE YEAR

A01

AARON

CSE

BE

2

A02 AKIL ECE BE 2

A03 BENNY IT B.TECH 2

SQL> select * from student where name BETWEEN 'AARON' and 'COOK';

IDNO NAME DEPT DEGREE YEAR

A01 AARON CSE BE 2

A02 AKIL ECE BE 2

A03 BENNY IT B.TECH 2

B01 COOK CSE BE 1

AS

SQL> select IDNO as rollno from student;

ROLLNO

A01

A02

A03

B01

B02

B03

6 rows selected.

SORT

SQL> select * from student where year<3 order by name desc;

IDNO NAME DEPT DEGREE YEAR

49

B03 ELAN IT B.TECH 1

B02 DANNY MECH BE 1

B01 COOK CSE BE 1

A03 BENNY IT B.TECH 2

A02 AKIL ECE BE 2

A01 AARON CSE BE 2

6 rows selected.

SQL> select * from student where year<3 order by dept asc;

IDNO NAME DEPT DEGREE YEAR

A01 AARON CSE BE 2

B01 COOK CSE BE 1

A02 AKIL ECE BE 2

A03 BENNY IT B.TECH 2

B03 ELAN IT B.TECH 1

B02 DANNY MECH BE 1

6 rows selected.

LIKE

SQL> select * from student where name LIKE '%Y';

IDNO NAME DEPT DEGREE YEAR

A03 BENNY IT B.TECH 2

B02 DANNY MECH BE 1

SQL> select * from student where name LIKE 'A%';

IDNO NAME DEPT DEGREE YEAR

A01

AARON

CSE

BE

2

A02 AKIL ECE BE 2

50

IS NULL

SQL> select * from student where IDNO IS NULL;

no rows selected

LOGICAL OR

SQL> select * from student where IDNO='A01' OR IDNO='B01';

IDNO NAME DEPT DEGREE YEAR

A01

AARON

CSE

BE

2

B01 COOK CSE BE 1

RESULT:

Thus the data manipulation language (dml) of base tables and views are executed.

51

EX.NO: 2

HIGH LEVEL PROGRAMMING LANGUAGE EXTENSIONS

Aim:

To implement PL/SQL program using control structures, procedures and functions.

(a) CONTROL STRUCTURE:

Introduction:

An interactive control statement is used when we want to repeat the execution of

one or more statements for specified number of times.

If-then:

The simplest way of IF statement associates a condition with a sequence of

statements enclosed by the keywords THEN and END IF as follows.

Syntax:

IF condition THEN

Sequence_of_statements

END IF;

The sequence of statements is executed only if the condition is true. If the condition

is false or null, then if statement does nothing. The control passes to the next statement.

If-then-else:

The second form of IF statement adds the keyword ELSE followed by alternative

sequence of statements, as follows

Syntax:

IF condition THEN

Sequence_of_statements1

ELSE

ENDIF;

Sequence_of_statements2

52

The sequence of statements in the ELSE clause is executed only if the condition is

false or null. Thus the ELSE clause ensures that a sequence of statements is executed.

If-then-elseif:

Sometimes you want to select from several mutually exclusive alternatives. The

third form of IF statement uses ELSEIF to introduce additional as follows

Syntax:

IF conditional1 THEN

Sequence_of_statements1

ELSEIF condition2 THEN

Sequence_of_statements2

ELSE

Sequence_of_statements3

ENDIF;

Nested If:

Syntax:

IF condition THEN

statement1;

ELSE

IF condition THEN

statement2;

ELSE

statement3;

END

IF; END IF;

Case statement:

Like the IF statement, the CASE statement selects one of statements to execute.

However, to select the sequence the case statement uses a selector rather than multiple

Boolean expressions.

The CASE statement has the following form

Syntax:

CASE selector

53

WHEN expression1 THEN sequence_of_statements1;

WHEN expression2 THEN sequence_of_statements2;

……

WHEN expression THEN sequence_of_statementsN;

[ELSE sequence_of_statementsN+1;]

END CASE;

Simple Loop:

The simplest form of loop statements is the basic loop which encloses a sequence of

statements between the keyword LOOP and ENDLOOP as follows

Syntax:

LOOP

Sequence_of_statements

EXIT [WHEN Condition]

END LOOP;

With each iteration of the loop the sequence of the statements is executed then the

control resumes at the top of the loop. If further processing is undesirable or impossibly you

can use an EXIT statement to complete the loop.

While loop:

The while loop statement associates a condition with a sequence of statements

enclosed by the keywords LOOP and END LOOP as follows

Syntax:

WHILE condition LOOP

Sequence_of_statements

END LOOP;

Before each iteration of the loop the condition is evaluated. If the condition is true the

sequence of statements is executed then the control resumes at the loop. If the condition is

false or null the loop is bypassed and the control passes to the next statement.

54

For loop:

The number of iterations through FOR loop is known before the loop is entered.

FOR loops iterate over a specified range of integers, the range is part of an iteration scheme,

which is enclosed by the keywords FOR and LOOP. A double dot (..) serves as the range

operator.

Syntax:

FOR counter IN [REVERSE]

LowerBound..UpperBound LOOP

Sequence_of_statements

END LOOP;

GOTO statement:

The GOTO statement branches to a label unconditionally. The label must be

unique within its scope and must proceed an executable statement or a pl/sql block.

When executed the GOTO statement transfers control to the labeled statement or block.

Syntax:

Begin

…

…

END;

GOTO insert_row;

INSERT INTO values

NULL statement:

The null statement does nothing other than pass control to the next statement. In

a conditional construct the NULL statement tells readers that a possibility has been

considered, but no action is necessary.

55

(b) PROCEDURES:

❖ A procedure is a block that can take parameters (sometimes referred to as arguments)

and be invoked.

❖ Procedures promote reusability and maintainability. Once validated, they can be used in

number of applications.

❖ A procedure has two parts:

1. The specification

2. The body.

The Specification:

❖ The procedure specification begins with the keyword PROCEDURE and ends with

the Procedure_Name or a Parameter_List.

❖ Parameter declarations are optional. Procedures that take no parameters are written

without parentheses.

The Body:

❖ The procedure body begins with the keyword IS (or AS) and ends with the keyword

END followed by an optimal procedure name.

❖ The procedure body has three parts:

1. A Declarative part.

2. An Executable part.

3. An Exception-handling part (Optional).

❖ The declarative part contains local declarations, which are placed between the

keywords IS and BEGINS.

❖ The keyword DECLARES, which introduces declarations in an anonymous PL/SQL

block, is not used.

❖ The executable part contains statements, which are placed between the keywords

BEGIN, and EXCEPTION (or END).

Syntax:

CREATE [OR REPLACE] PROCEDURE Procedure_Name [(parameter, parameter)]

IS

[declaration_section]

BEGIN

Executable_section

56

[EXCEPTION

Exception_section]

END [Procedure_Name];

(c) FUNCTIONS:

❖ A function is a program that might perform an action and does return a value. The

function is a subprogram that computes a value.

❖ Like a procedure, a function has two parts:

1. The specification

2. The body

The Specification:

❖ The function specification begins with the keyword FUNCTION and ends with the

RETURN clause, which specifies the data type of the return value.

❖ Parameter declaration are optional. Functions that take no parameters are written

without parentheses.

The Body:

❖ The function body begins with the keyword IS (or AS) and ends with keyword END

followed by an optional function name.

❖ The function body has three parts:

1. A Declarative part.

2. An Executable part.

3. An Exception-handling part (Optional).

❖ The declarative par contains local declarations, which are placed between the

keywords IS and BEGIN.

❖ The keyword DECLARES is not used.

❖ The executable part contains statements, which are placed between the keywords

BEGIN, and EXCEPTION (or END).

57

Syntax:

CREATE [OR REPLACE] FUNCTION function_name [(parameter [, parameter])]

AS

[declaration_section]

BEGIN

executable_section

RETURN

END [function_name];

EXERCISE:

FACTORIAL PROGRAM

SQL> declare

2 n number(2);

3 p number(5);

4 i number(2);

5 begin

6 n:=&n;

7 p:=1;

8 for i in 1..n

9 loop

10 p:=p*i;

11 end loop;

12 dbms_output.put_line('Factorial value is '||to_char(p));

13 end;

14 /

Enter value for n: 5

old 6: n:=&n;

new 6: n:=5;

PL/SQL procedure successfully completed.

SQL> set serveroutput on;

SQL> /

Enter value for n: 5

old 6: n:=&n;

58

new 6: n:=5;

Factorial value is 120

PL/SQL procedure successfully completed.

(b) PROCEDURES

SQL> create table stud(rno number(2),mark1 number(3),mark2 number(3),total

number(3),primary key(rno));

Table created.

SQL> desc stud;

Name Null? Type

RNO NOT NULL NUMBER(2)

MARK1 NUMBER(3)

MARK2 NUMBER(3)

TOTAL NUMBER(3)

SQL> select * from stud;

RNO MARK1 MARK2 TOTAL

1 80 85 0

2 75 84 0

3 65 80 0

4 90 85 0

SQL> create or replace procedure stud (rnum number) is

2 m1 number;

3 m2 number;

4 total number;

5 begin

6 select mark1,mark2 into m1,m2 from stud where rno=rnum;

7 if m1<m2 then

8 update stud set total=m1+m2 where rno=rnum;

9 end if;

59

10 end;

11 /

Procedure created.

SQL> exec studd(1);

PL/SQL procedure successfully completed.

SQL> select * from stud;

RNO MARK1 MARK2 TOTAL

1 80 85 165

2 75 84 0

3 65 80 0

4 90 85 0

SQL> exec studd(4);

PL/SQL procedure successfully completed.

SQL> select * from stud;

RNO MARK1 MARK2 TOTAL

1 80 85 165

2 75 84 0

3 65 80 0

4 90 85 0

SQL> exec studd(2);

PL/SQL procedure successfully completed.

SQL> exec studd(3);

PL/SQL procedure successfully completed.

SQL> select * from stud;

60

RNO MARK1 MARK2 TOTAL

1 80 85 165

2 75 84 159

3 65 80 145

4 90 85 0

(c) FUNCTION:

SQL> create table stud

2 (

3 rno number(5),

4 mark1 number(5),

5 mark2 number(5),

6 total number(5),primary key(rno)

7);

Table created.

SQL> desc stud;

Name Null? Type

RNO NOT NULL NUMBER(5)

MARK1 NUMBER(5)

MARK2 NUMBER(5)

TOTAL NUMBER(5)

SQL> insert into stud values(&rno,&mark1,&mark2,&total);

Enter value for rno: 1

Enter value for mark1: 80

Enter value for mark2: 65

Enter value for total: 0

old 1: insert into stud values(&rno,&mark1,&mark2,&total)

new 1: insert into stud values(1,80,65,0)

1 row created.

61

SQL> insert into stud values(&rno,&mark1,&mark2,&total);

Enter value for rno: 2

Enter value for mark1: 77

Enter value for mark2: 56

Enter value for total: 0

old 1: insert into stud values(&rno,&mark1,&mark2,&total)

new 1: insert into stud values(2,77,56,0)

1 row created.

SQL> insert into stud values(&rno,&mark1,&mark2,&total);

Enter value for rno: 3

Enter value for mark1: 89

Enter value for mark2: 90

Enter value for total: 0

old 1: insert into stud values(&rno,&mark1,&mark2,&total)

new 1: insert into stud values(3,89,90,0)

1 row created.

SQL> select * from stud;

RNO MARK1 MARK2 TOTAL

1

80

65

0

2 77 56 0

3 89 90 0

SQL> create or replace function sfunc(rnum number) return number is

2 total stud0.total%type;

3 m1 stud0.mark1%type;

4 m2 stud0.mark2%type;

5 begin

6 select mark1,mark2 into m1,m2 from stud0 where rno=rnum;

7 total:=m1+m2;

8 return total;

62

9 end;

10 /

Function created.

SQL> select sfunc(1) from dual;

SFUNC(1)

145

SQL> select sfunc(2) from dual;

SFUNC(2)

133

SQL> select sfunc(3) from dual;

SFUNC(3)

179

RESULT:

Thus executed high level programming language extensions

63

EX.NO:3

Aim:

FRONT END TOOLS

Basic Study of VB Front end Tools

Introduction:

Visual basic uses object oriented techniques to create program that are powerful, robust and

efficient.

Start →programs → Microsoft visual studio → Microsoft visual basic 6.0

Project:

Each application in visual basic is called as project. A project is a collection of forms,

modules, user controls and data reports etc. it organizes the forms and modules. The project is saved

with the extension .vbp.

Forms:

A form is a collection of controls. The controls are placed on the form. The form also has its

own properties and methods. It has the extension .frm. - 99 -More than one form may be used in

an application.

Visual basic is referred to as an integrated development environment (IDE). IDE consists of

following elements,

● Title bar

● Menu bar

● Tool bar

● Tool box

● Control menu

● Project explorer window

● Properties window

● Object browser

● Form designer

64

● Code editor window

● Form layout window

TOOL BAR:

ADDING AND REMOVING TOOLBAR:

⮚ Right click anywhere on the menu bar, or choose toolbars from the view menu the

toolbar pop-up menu appears.

⮚ Select the type of standard toolbar that you want from the pop-up menu. If a check is

to the left of the toolbar type, that toolbar is already visible.

Under the menu, there is a toolbar. Toolbar is used to quick access the commonly used menu

commands. There are few build in toolbars,

● Standard toolbar

● Edit toolbar

● Debug toolbar

● Form edit toolbar

65

STANDARD TOOLBAR:

The standard toolbar is the central toolbar in the visual basic IDE. The standard toolbar offers

many features found in the file, project, debug and run menu.

The standard toolbar enables fast access to often use functionally and information.

THE EDIT TOOLBAR:

The extended edit menu and some debug menu functions from the edit toolbar can be

accessed.

The feature of edit toolbar is similar to those of the edit menu. You can cut, copy and paste

text. You can manipulate the layout of the code and do text selection, searches and replacement. Also

you can use automatic coding features such as quick info.

THE DEBUG TOOLBAR:

The debug toolbar enables you to access the debugging functions of the visual basic IDE.

You can use the debug toolbar to test the program and restore errors that might occur. When you

debug a program you do such things as run the code a line at a time.

THE FORM EDITOR TOOLBAR:

You can use the form editor toolbar to size, move, and align controls on a form. The form

editor toolbar has the same set of features as the format menu.

You align and size multiple controls on a form with the form editor toolbar. There are small

download facing arrowheads to the right of the align, centre and make toolbar buttons. These

arrowheads indicate that a dropdown menu will appear when you select that toolbar button.

PROJECT EXPLORER WINDOW:

To experiment with the project explorer window, click the toggle folders button. Notice that

the folders are collapsed.

To expand the folders, click the toggle button again. Still on the project explorer window,

click view code. You are presented with the code editor window.

66

To send the code editor window to the background again, on the project explorer windows,

click the view object button.

DEFAULT CONTROLS:

Common properties:

Important common properties include the following,

● Name

● Index

● Left

● Top

● Height

● Width

● Enabled

● Visible

Controls contained in the visual basic toolbox:

1) Picture box: Displays graphics. Can also serve as a container for other controls.

Property: caption, picture.

2) Label box: Displays text that user cannot edit.

Property: caption.

3) Text box: Displays text. Allows the user to enter and edit text.

Property: text.

4) Frame: Serves as a container for other commands. Provides grouping of controls.

Property: caption.

5) Command buttons: Allows the user to initiate actions by clicking the button.

6) Check box: Lets the user make a true/false choice.

7) Option button: Lets the users choose from one option from a group of items.

Property: caption.

8) Combo box: Lets the users choose from a list of items or enter a new values.

Property: caption.

9) List box: Lets the user choose from a list of items.

Property: list.

10) Horizontal/ Vertical scroll box: Lets the user choose a scrollbar value based on the

position of button in the bar.

67

11) Timer: Lets the program perform functions on a timed basic.

12) Drive list box: Let the user select a disk drive.

13) Directory list: Let the users select a box directory or folders.

14) File list box: Lets the user select a file.

15) Shape: Displays a shape on the form.

16) Line: Displays a line on the form.

17) Image: similar to a picture box control, uses fewer system resources but doesn’t

support as many properties, events and methods.

18) Data control: Provides an interface between the program and a data source.

19) OLE: Provides a connection between the program and an OLE server.

20) Common dialog: Allows use of windows standard dialog boxes to retrieve

information such as filenames and colors.

RESULT:

Thus, front end tool is executed.

68

EX.NO:4

FORMS-TRIGGERS-MENU DESIGN

Aim:

To study and execute Triggers in RDBMS.

Definition & Syntax: -

TRIGGER:

A database trigger is a stored procedure that is fired when an insert, update or delete

statement is issued against the associated table. Database triggers can be used for the

following purposes.

To generate data automatically.

To enforce complex integrity constraints. (e.g., Checking with sysdate, checking

with data in another table).

To customize complex security authorizations.

To maintain replicate tables.

To audit data modifications.

Syntax for Creating Triggers

The syntax for creating a trigger is given below

CREATE OR REPLACE TRIGGER <trigger_name>

[BEFORE/AFTER] [INSERT/UPDATE/DELETE] ON <table_name>

[FOR EACH statement/FOR EACH row]

[WHEN <condition>]

PL/SQL block;

PARTS OF A TRIGGER

A database trigger has three parts, namely, a trigger statement, a trigger body and a

trigger restriction.

69

TRIGGER STATEMENT:

A trigger statement specifies the DML statements like update, delete and insert and it

fires the trigger body. It also specifies the table to which the trigger is associated.

TRIGGER BODY:

Trigger body is a PL/SQL block that is executed when a triggering statement is

issued.

TRIGGER RESTRICTION:

Restrictions on a trigger can be achieved using the WHEN clause as shown in the

syntax for creating triggers. They can be included in the definition of a row trigger, where in,

the condition in the WHEN clause is evaluated for each row that is affected by the trigger.

TYPES OF TRIGGER:

Triggers are categorized into the following types based on when they are fired:

⮚ Before

⮚ After

⮚ For each row

⮚ For each statement (default)

BEFORE /AFTER OPTIONS:

The before/after options can be used to specify when the trigger body should be fired

with respect to the triggering statement. If the user includes a BEFORE option, then, Oracle

fires the trigger before executing the triggering statement. On the other hand, if AFTER is

used, then, Oracle fires the trigger after executing the triggering statement.

FOR EACH ROW / STATEMENT:

When the for each row / statement option when included in the ‘create trigger’ syntax

specifies that the trigger fires once per row. By default, a database trigger fires for each

statement.

Using a combination of the above options, we can assign 12 types of triggers to a database

table.

Before update row / statement

Before delete row / statement

70

Before insert row / statement

After update row / statement

After delete row / statement

After insert row / statement

EXERCISE:

1. Write a PL/SQL program to create a trigger before the user inserts the data into the table.

2. Write a PL/SQL program to create a trigger before the user deletes the data from the table.

3. Write a PL/SQL program to create a trigger before the user changes the value of the salary

of the employee.

ANSWERS:

SQL>create or replace trigger ins1 before insert on emp begin

raise_application_error (-20001,'you can’t insert a row'); end;

OUTPUT:

SQL>insert into emp

values(&eid,'&name','&dob','&addr','&sex','&desig',&deptno,'&maritsta',&salary);

SQL>insert into emp *

values(&eid,'&name','&dob','&addr','&sex','&desig',&deptno,'&maritsta',&salary);

ERROR at line 1:

ORA-20001: you cant insert a row

ORA-06512: at "CSE382.ins1", line 2

ORA-04088: error during execution of trigger 'CSE382.ins1'

SQL>create or replace trigger del1 before delete on emp

begin

raise_application_error (-20001,'you can’t delete a row');

end;

71

OUTPUT:

SQL>delete from emp where eid=4444;

delete from emp where eid=4444;

*

ORA-20001: you can’t delete a row

ORA-06512: at "CSE382.DEL1", line 2

ORA-04088: error during execution of trigger 'CSE382.DEL1'

SQL> create trigger upd1 before update on emp for each row 2 begin

3 if :new.sal < 1000 then

4 raise_application_error(-20001,'salary can’t be low than this'); 5 end if;

6 end;

7 /

Trigger created.

SQL> update emp set sal=500 where dno=2;

update emp set sal=500 where dno=2

*

ERROR at line 1:

ORA-20001: salary can’t be low than this

ORA-06512: at "CSE382.UPD1", line 3

ORA-04088: error during execution of trigger 'CSE382.UPD1'

RESULT:

Thus forms-triggers-menu design is executed.

72

EX.NO: 5

 REPORTS

Aim:

To design generate reports by using VB and oracle.

Steps:

1. Project Components Designer tabCheck the following

● Data Report

● Data Environment

2. Project Explorer Right click – Add Data Environment.

3. Click connection1 properties MS OLEDB provider for oracleClick next

type the username and password in data link properties click test connection

and it will display the message if the connection is true.

4. Right click the connectio1 in data environment add command option click command1

in connection1 Go to properties To enter database object table and select the

object name.

5. Project Explorer Right click –Add data report in data report properties. Set the

following properties

● Data source Give data environment name.

● Data member Give command name.

6. Drag the command1 object in data report in detail section.

7. Arrange the title in page header section and design the data report in specified section.

8. Create one form with one command button name in show report .

Button click event

Report name.Show

Eg

Data report1.Show

73

74

75

76

77

CRITERI

A
MAX.MARK

S
MARKSOBTAINED

AIM& ALGORITHM 5
EXECUTION&OUTPUT 10
VIVA 5
TOTAL 20

RESULT:

 Thus, My SQL program for reports is executed

78

EX.NO: 6

DESIGN AND IMPLEMENTATION OF EMPLOYEE

DATABASE IN BANK

Aim:

To design a forms and write a code for banking systems and make a connection with

back end using ADO Data control.

Table Used: Employee:

NAME FATHER

_NAME
EMP.
_No

DOB SEX MOTHER
TONGUE

CITY STREET STATE

Sekar Moorthy 101 2/2/80 Male Hindi Delhi Clive St Delhi

Ajith Arjun 102 23/9/81 Male English Banglor
e

MG St KA

Anitha Arun 103 30/10/75 Female Tamil Chennai KKnagar TN

Kowsi Maridass 104 20/1/87 Female Telugu Hydraba
d

Port st AP

Description:

Table creation:

The student database has been created in Oracle and some rows have been inserted

using the DDL and DML command.

Table Creation:

SQL> create table employee (name varchar2(20), f_name varchar2(15), emp_no number(5),

dob date, sex varchar2(5) , m_tong varchar2(10) , city varchar2(10) , street varchar2(10) ,

state varchar2(10));

Table created.

79

Values Are Inserted By

SQL>Insert into employee values (‘&name’, ‘&f_name’, &emp_no, ‘&dob’, ‘&sex’,

‘&m_tong’, ‘&city’, ‘&street’, ‘&state’);

To open visual basic:

1) Go to start → all programs→ Microsoft Visual Studio 6.0 → Microsoft Visual Basic

6.0

→Click.

To open a new form:

2) While opening it will ask you New project in that click standard exe→ then open→

new

Form is opened. (Or)

Go to File menu →click new project→new form is opened.

To bring the toolbar:

3) Go to tools menu→click toolbar→tool bar is loaded.

To create a form:

4) From the tool bar drag the text box and label and place it in the form.

5) The number of text box and label depends upon the fields we have in the Table.

6) We can also have command buttons to perform particular action when they are

clicked.

7) To view the form we should press shift +F7.

Data control:

Visual Basic provides a set of controls that allow you to display, add edit data in the

database with minimal coding. When such controls are used the user need not write code,

instead they allow the user to use their properties to access the database. Such controls are

known as Data-aware controls. Data controls are a standard control available in the tool box.

Let us consider that we are maintaining a database named emp, which consists of

fields like empno, empname, empadd, empphone. The steps to connect the data control to the

emp database are:

80

1. Place the Data control on the form by double clicking on the icon representing the

Data control in the toolbox.

2. Place four text boxes on the form to display the value of the fields empno, empname,

empadd and empphone from the table emp into respectively.

3. Set the connection string property of the Data control to Access. The Connection

string property determines the type of the database to access.

4. Set the DatabaseName property to emp. The DatabaseName property determines the

name of the database to be opened.

5. Set the RecordSource property of the Data control to empinfo. The RecordSource

property determines the name of the table to be accessed.

6. Make the text boxes bound to the Data control by using the DataSource and DataField

properties. A control is said to be data-aware when it is bound to a Data control. The

DataSource property determines the name of the Data control to which the text box is

to be bound. The DataField property determines the name of the field in the table. Set

the Name, DataSource and DataField properties of the text boxes as shown in the

below table.

Object Property Setting

Text1 Name txtempno

 DataSource data 1

 DataField empno

ADODB1 ConnectionString Provider=MSDAORA.1;

User ID=scott;Persist Security

Info=false

 Password tiger

81

 RecordSource empinfo

 UserName scott

7. Run the application and use the arrow buttons on the data control to navigate through

the records in the below screen. You have to write code to add, update, edit and delete

records in the below screen. Or else press the function key 5 (F5)

Form Design:

82

CODING WINDOW:

Private Sub CLEAR_Click ()

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

Text6.Text = ""

Text7.Text = ""

Text8.Text = ""

Text9.Text = ""

End Sub

Private Sub DELETE_Click()

Adodc1.Recordset.DELETE

MsgBox "Records are Deleted successfully", vbInformation

End Sub

Private Sub INSERT_Click()

Adodc1.Recordset.AddNew

MsgBox "Records are Inserted successfully", vbInformation

End Sub

Private Sub UPDATE_Click()

Adodc1.Recordset.UPDATE

MsgBox "Records are Updated successfully", vbInformation

End Sub

Private Sub DISPLAY_Click()

rs.Open " select * from bank where acc_no=" & Text1.Text & " ", Con, adOpenStatic

If rs.BOF Then

MsgBox "No Such Record Found", vbInformation

Else

83

MsgBox "Record Found", vbInformation

Text1.Text = rs.Fields("name")

Text2.Text = rs.Fields("f_name")

Text3.Text = rs.Fields("emp_n0")

Text4.Text = rs.Fields("dob")

Text5.Text = rs.Fields("sex")

Text6.Text = rs.Fields("m_tong")

Text7.Text = rs.Fields("city")

Text8.Text = rs.Fields("street")

Text9.Text = rs.Fields("state")

End If

End Sub

Screen Shots:

1. Insertion

84

1. Deleting

85

2. Updating

86

3. Display a particular record

RESULT:

Thus design and implementation of employee is executed.

87

EX.NO: 7

An Exercise using Open-Source Software like My SQL

Aim:

 To use an open-Source Software My SQL and create a simple table with countries including

columns with country-id, country-name and region-id.

Code:

CREATE TABLE countries (

COUNTRY_ID varchar(2),

COUNTRY_NAME varchar(40),

REGION_ID decimal(10,0)

);

Execute the above code in MySQL 5.6 command prompt

Output :

mysql> DESC countries;

+--------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------+---------------+------+-----+---------+-------+

| COUNTRY_ID | varchar(2) | YES | | NULL | |

| COUNTRY_NAME | varchar(40) | YES | | NULL | |

| REGION_ID | decimal(10,0) | YES | | NULL | |

+--------------+---------------+------+-----+---------+-------+

3 rows in set (0.01 sec)

RESULT:

Thus, open-Source Software My SQL was used to create a simple table.

